For error-free computation of high-derivatives of mathematical functions used in engineering applications, hyper-dual numbers (HDN) are receiving much attention in computational mechanics. Differently from classical finite differences, HDN provides a practically exact evaluation of higher-derivatives, such as the first and second derivatives of stiffness matrix with respect to nodal degrees-of-freedom (dof). As a preliminary step for introducing HDN in stability problems, the present paper formulates the theoretical basis of a 2-mode asymptotic bifurcation theory and examines its versatility on simple bench models. All obtained results in numerical examples well predict the stability behavior and agree with existing analytical solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.