The metastable phase separation and rapid solidification of ternary Co-Cu-Pb monotectic alloys have been investigated under free fall condition. With the decrease of droplet diameter, the microstructures of Co51Cu47Pb2 and Co47Cu44Pb9 alloys display a "dendrite→core-shell→dendrite" transformation and a morphology transition from core-shell to homogeneous microstructure, respectively. X-ray diffraction analysis indicates that the solidified microstructures are composed of α(Co), (Cu) and (Pb) phases. α(Co) and (Cu) phases grow mainly in dendritic manner, and (Pb) phase is distributed interdendritically among (Cu) phase. Both experimental results and theoretical calculations reveal that the interfacial energy between (Co)/(Pb) liquid phases is larger than thoses of (Co)/(Cu) and (Cu)/(Pb) phases. The weak wetting ability between (Co) and (Pb) liquids results in the distribution of (Pb) phase inside the Cu-rich zone instead of Co-rich zone. Three possible solidification routes are deduced according to the solidification microstructure, in which the solidification process consists of phase separation L→L1(Cu)+L2(Co), peritectic transformation α(Co)+L→(Cu) and monotectic transformation L(Cu)→S(Cu)+L(Pb).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.