By using the method of quasi-shells , the nonlinear dynamic equations of three-dimensional single-layer shallow cylindrical reticulated shells with equilateral triangle cell are founded. By using the method of the separating variable function, the transverse displacement of the shallow cylindrical reticulated shells is given under the conditions of two edges simple support. The tensile force is solved out from the compatible equations, a nonlinear dynamic differential equation containing second and third order is derived by using the method of Galerkin. The stability near the equilibrium point is discussed by solving the Floquet exponent and the critical condition is obtained by using Melnikov function. The existence of the chaotic motion of the single-layer shallow cylindrical reticulated shell is approved by using the digital simulation method and Poincaré mapping.
The nonlinear dynamical equations of axle symmetry are established by the method of quasi-shells for three-dimensional shallow conical single-layer lattice shells. The compatible equations are given in geometrical nonlinear range. A nonlinear differential equation containing the second and the third order nonlinear items is derived under the boundary conditions of fixed and clamped edges by the method of Galerkin. The problem of bifurcation is discussed by solving the Floquet exponent. In order to study chaotic motion, the equations of free oscillation of a kind of nonlinear dynamics system are solved. Then an exact solution to nonlinear free oscillation of the shallow conical single-layer lattice shell is found as well. The critical conditions of chaotic motion are obtained by solving Melnikov functions, some phase planes are drawn by using digital simulation proving the existence of chaotic motion.
To begin with, in this paper, the displacement governing equations and the boundary conditions of nonsymmetrical large deflection problem of circular thin plates are derived. By using the transformation and the perturbation method, the nonlinear displacement equations are linearized, and the approximate boundary value problems are obtained. As an example, the nonlinear bending problem of circular thin plates subjected to comparatively complex loads is studied.
WANG Xin-zhi (~]~:~Ji:,~=:~) 1 , ZHAO Yong-gang ()~]7<~]1]) 1 , JU Xu (1~ ZHAO Yan-ying (j~f~e~) 1 , YEH Kai-yuan (llJ-~t=~2~) L2(1.Abstract: F'wstly, the cross large deflection equation of circular thin plate with variable thickness in rectangular coordinates system was transformed into unsymmetrical large deflection equation of circular thin plate with variable thickness in polar coordinates system. This cross equation in polar coordinates system is united with radical and tangential equations in polar coordinates system, and then three equilibrium equations were obtained. Physical equations and nonlinear deformation equations of strain at central plane are substituted into superior three equilibrium equations, and then three unsymmetrical nonlinear equations with three deformation displacements were obtained. Solution with expression of Fourier series is substituted into fundamental equations; correspondingly fundamental equations with expression of Fourier series were obtained. The problem was solved by modified iteration method under the boundary conditions of clamped edges. As an example, the problem of circular thin plate with variable thickness subjected to loads with cosin form was studied. Characteristic curves of the load varying with the deflection were plotted. The curves vary with the variation of the parameter of variable thickness. Its solution is accordant with physical conception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.