Recent studies have demonstrated that a simple ketone [acetone, (CH3)2C=O)] reacts with the Si(100) surface in a [2+2] C=O cycloaddition or by α-H cleavage to form Si-C and/or Si-O σ-bonds. To understand the reactivity of carbonyl compounds bearing different substitutes, the [2 + 2] C=O cycloaddition and α-H cleavage of carbonyl compounds CH3COR (R=CH3, H, C2H5, C6H5) on Si(100) surface have been investigated using density functional theory at the B3LYP/6-311 ++ G(d,p)//6-31G(d) level. Our calculation results reveal that: (1) both cycloaddition and α-H cleavage corresponds to very low energy barriers (lower than 25 kJ•mol-1), and the energy barrier for cycloaddition is slightly higher than α-H cleavage; (2) the substituents on the carbonyl compound [CH3COR] has only a minor influence on the energy barrier; (3) the α-H cleavage reactions are thermodynamically and kinetically more favorable than cycloadditions; (4) for the α-H cleavage of butanone, reactions at C1 and C3 positions are competitive. These findings suggest that the reactions of ketone derivatives with Si(100) surface will generate multiple products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.