The spin ladder compounds Sr14Cu24O41+δ were synthesized by conventional solid state reaction method with subsequent annealing at 400, 500, 600, 800 and 900 ℃, respectively. The energy dispersive spectroscope (EDS) measurement confirms that the content of oxygen in the samples decreases with the increasing of annealing temperature. The measurement of magnetic susceptibility reveals that the sample annealing at 600 ℃ has the largest number of dimers. The measurement of Raman spectrum shows some new Raman vibrational features. Corresponding to δ>0 or δα=cl/cc is near the minimal value 10/7 and the Cu—O bond has relatively long length.
Polycrystalline samples of Sr14Cu24O41 and Sr14(Cu0.97M0.03)24O41(M=Zn, Ni, Co) were synthesized by standard solid state reaction method. All samples are single phase as identified by X-ray diffraction, no regular shift of lattice parameters a, c is found, but the lattice parameter b increases slightly with doping magnetic ions Ni and Co, and has no change with doping non-magnetic ion Zn, respectively. Selected area electron diffraction experiments show that Zn,Ni and Co ions may substitute for Cu ions in the chain. All the doping compounds are still semiconductors and have a crossover temperature Tρ like the parent phase Sr14Cu24O41. The influence of magnetic ion Ni or Co doping on the resistivity is smaller than that of non-magnetic ion Zn doping, while the influence of non-magnetic ion Zn doping on crossover temperature is smaller than that of magnetic ion Ni or Co doping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.