The SrAl2B2O7:Dy3+ phosphor is synthesizd through a general high temperature solid-state reaction, and its luminescence properties are investigated. The emission spectrum of SrAl2B2O7:Dy3+ shows the bands at 480nm,573nm and 678nm under the 365nm excitation, corresponding to the 4F9/2→6H15/2,4F9/2→6H13/2 and 4F9/2→6H11/2 typical transitions of Dy3+ respectively. The excitation spectrum for 573nm emission has excitation bands at 295 nm,325 nm,350 nm,365 nm and 400nm. The influence of doped Dy3+ contentration on the emission spectrum and the luminescent intensity of SrAl2B2O7:Dy3+ is investigated. The result shows that the intensity ratio of yellow emission (573nm) to blue emission (483 nm), Iy/Ib, increases with the increase of Dy3+ concentration, which may be explained by the Judd-Ofelt theory. The luminescent intensity increases first with the increase of Dy3+ concentration, then decreases. The concentration self-quenching is attributed to the d-d interaction according to the Dexter theory. The introducing of charge compensation agents of Li+, Na+ and K+ ions can augment the emission intensity. It is found that Li+ ions are the best to enhance the emission intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.