Exploration of efficient deep red phosphor based on non-rare-earth ion activated oxide is of great practical value in the field of phosphors converted white light-emitting diode lighting. A spinel Mg1+yAl2-xO4:xMn4+, yMg2+ phosphor with deep red emission is synthesized by a solid-state reaction route. The crystal structure and morphology are characterized by powder X-ray diffraction and scanning electron microscopy. The luminescent performance is characterized by fluorescence spectrophotometer and fluorescence decay curves. The results demonstrate that the synthesized phosphor shows that two excited spectrum bands centered at 290 nm and 438 nm cover a broad spectral region from 220 nm to 500 nm due to the Mn4+-O2- charge transfer band and the 4A2-4T1 and 4T2 transitions of Mn4+ ions. Upon excitation at 300 nm, a strong, narrow red emission band is observed between 600 and 700 nm peaked at 652 nm as a result of the spin-forbidden 2Eg-4A2g electron transition of Mn4+. The corresponding chromaticity coordinate is (0.7256, 0.2854). Additionally, the concentration quenching of Mn4+ in the MgAl2O4 host is evaluated in detail, which indicates that the optimum doping concentration of Mn4+ is experimentally determined to be 0.14 mol%. The critical distance is calculated to be 52.15 according to the Blasse equation, which elucidates that the concentration quenching mechanism is consequently very likely to be induced by the multipole-multipole interaction. The crystal field strength (Dq) and the Racah parameters (B and C) are estimated to evaluate the nephelauxetic effect of Mn4+ suffered in MgAl2O4:Mn4+ host lattice. Luminous mechanism is explained by Tanabe-Sugano energy level diagram of Mn4+ ion. The ratio of Dq/B equals 1.74, indicating that Mn4+ ions experience a weak crystal field in the MgAl2O4 host and emission peak energy of 2Eg-4A2g transition is dependent on the nephelauxetic effect. The red emission intensity of Mg1+yAl2-xO4:xMn4+, yMg2+ increases on account of excess Mg2+ which would compensate for the local charge balance surrounding Mn4+ ions, furthermore, lead the Mn4+-Mn4+ pairs connected with interstitial O2- to transform into isolated Mn4+ ions, and thus eliminating energy transfer and enhancing the luminescence efficiency effectively. The decay times of two time-dependent curves of Mg1+yAl2-xO4:xMn4+,yMg2+ are 0.672 ms and 0.604 ms, and each entire decay curve could be well-fitted to single-exponential, confirming that there is only a single Mn4+ ion luminescence center. The decay time of Mn4+ luminescence is prolonged with the increase of Mg2+ content, indicating that excitation energy transfer and non-radiative relaxation between Mn4+-Mn4+ pairs decrease, the reason is that photoexcitation energy can be temporarily stored in the trapping centers induced by excess positive charges. These results imply that Mn4+ doped Mg1+yAl2 -xO4:xMn4+, yMg2+ is a promising candidate of deep-red phosphors for near-UV and blue light emitting diodes. These findings in the paper would be beneficial not only to developing a low-cost and safe strategy to produce high-efficient Mn4+ activated luminescent materials for white light emitting diodes, but also to providing a new insight into improving the photoluminescence properties of Mn4+.
A series of Ba1.99-x/2-2ySiO4:Eu0.012+, Lix+y2+, Euy3+ green phosphors were synthesized by one-step calcination process with precursor prepared by chemical precipitation. X-ray diffraction (XRD) and fluorescence spectrophotometry were employed to characterize the crystal structure and luminescent properties, respectively. The results show that co-doping of Eu2+, Li+ or Er3+ do not change the crystal structure. The excitation band of green phosphors Ba1.99-x/2-2ySiO4:Eu0.012+, Lix+y2+, Euy3+ extends from 270 to 440 nm, with peaks appearing around 288 and 360 nm, thus the phosphors can be excited effectively by InGaN chip which produces ultraviolet light in the range of 350410 nm. The emission spectrum excited by 360 nm shows a characteristic wide band with a peak at about 500 nm, which can be attributed to the typical 4f65d14f7 transition emission of Eu2+. The emission spectrum intensity of Ba1.99-x/2SiO4:Eu0.012+, Lix2+ first increases with increasing Li+ doping concentration, and then decreases. The strongest emission intensity occars when Li+ doping concentration is 0.1. Two additional peaks appear in the emission spectrum of Ba1.99-x/2-2ySiO4:Eu0.012+, Lix+y2+, Euy3+ green phosphors around 488 nm and 530~nm separately when the phosphors are co-doped with Li+ and Er3+ from 0 to 0.012, which are attributed to the 4F7/24I15/2 and 2H11/24I15/2 translation emission of Er3+, the energy transfer effect from Eu2+ to Er3+ is also analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.