In this paper, a new method is proposed to study the mechanism of charge collection in single event transient (SET) production in 90 nm bulk complementary metal oxide semiconductor (CMOS) technology. We find that different from the case in the pMOSFET, the parasitic bipolar amplification effect (bipolar effect) in the balanced inverter does not exist in the nMOSFET after the ion striking. The influence of the substrate process on the bipolar effect is also studied in the pMOSFET. We find that the bipolar effect can be effectively mitigated by a buried deep P+-well layer and can be removed by a buried SO2 layer.
A comparison of the temperature dependence of the P-hit single event transient (SET) in a two-transistor (2T) inverter with that in a three-transistor (3T) inverter is carried out based on a three-dimensional numerical simulation. Due to the significantly distinct mechanisms of the single event change collection in the 2T and the 3T inverters, the temperature plays different roles in the SET production and propagation. The SET pulse will be significantly broadened in the 2T inverter chain while will be compressed in the 3T inverter chain as temperature increases. The investigation provides a new insight into the SET mitigation under the extreme environment, where both the high temperature and the single event effects should be considered. The 3T inverter layout structure (or similar layout structures) will be a better solution for spaceborne integrated circuit design for extreme environments.
By performing first-principles calculations, we demonstrate the electronic structure, the transport properties, and the adsorption effect of A-Z-A graphene nanoribons field effect transistor. It is concluded that the pure A-Z-A GNR-FET has typical bipolar characteristics, and energy gaps will become smaller due to the adsorbed molecule. For the adsorption of H, N2, NO2, H2O, SO2, O2 and NO, A-Z-A GNR-FET remains typical bipolar characteristic, but shows a little difference in transport property after it has adsorbed different types of molecles. For the adsorption of OH, transport property changes totally and does not have a bipolar characteristic any more. These results may contribute to the implementation of gas detector based on GNRs and the design of GNR-FET applied in complex environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.