The goal of this research is to investigate ways to improve science teaching methods to develop students' key competencies. Since the OECD DeSeCo (Definition and Selection of Key Competencies) project, key competencies are redefined as 'what people should know and be able to do in order to lead a successful life in a wellfunctioning society, which leads many countries to emphasize competency-based curriculum. In this research, we collected and analyzed foreign and domestic classroom cases that have implemented competency-based curriculum in science teaching. Through open-ended interviews with the teachers and principals, we explored ways to improve science teaching methods to develop students' key competencies. In foreign cases, science teachers emphasized students' knowing what KCs to accomplish, activities and student-centered learning, students' group activities and collaboration, and greater curriculum integration among subjects and contexts. Korean science teachers argued that the KCs should be realized through teaching methods and emphasized scientific inquiry learning whereby nonscience track students could also benefit from science lessons. Korean science teachers also emphasized links to reallife situations, providing students with various learning experiences that supported students to develop the KCs, and the delivery of an integrated curriculum. In the conclusion section, the difficulties with the implementation of key competencies are discussed.: Key Competencies, Curriculum Reform, Competency-based curriculum, teaching methods
Changes are expected in the future, and the future society will expect changes in education. Science curriculum needs to reflect such demands for changes in the future of education. Hence, this study explored ways to reflect the changes demanded by the future society in science education. In this study, we investigated the major issues and directions for improvements based on the findings from questionnaires given to 447 primary and secondary school science teachers as well as in-depth interviews with 12 experts. We explored the problems of the 2009 revised national science curriculum including organization of science elective courses, fusion 'science' as an elective course, intensive course-taking of science, career-focused science curriculum, variation of completion units in science elective courses, and fairness of science elective course selection in college entrance. In addition, we proposed ways to organize science curriculum around core competencies and STEAM education suggested by science teachers. According to the results, we need to add such key competencies as basic learning abilities, self-identity, and moral competencies to science curriculum in addition to existing key competencies including problem solving and communication. Regarding the fusion science, experts contended that convergence of science courses should come before that of science and other subjects, and that STEAM with science as the axis was the desired form of convergence. We also need to establish a curriculum development center that exclusively focuses on science curriculum research and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.