:The early Sea-viewing Wide Field-of-view Sensor(SeaWiFS) atmospheric correction algorithm which is the basis of the atmospheric correction algorithm for Geostationary Ocean Color Imager(GOCI) assumes that water-leaving radiances is negligible at near-infrared(NIR) wavelengths. For this reason, all of the satellite measured radiances at the NIR wavelengths are assigned to aerosol radiances. However that assumption would cause underestimation of water-leaving radiances if it were applied to turbid Case-2 waters. To overcome this problem, Management Unit of the North Sea Mathematical Models(MUMM) atmospheric correction algorithm has been developed for turbid waters. This MUMM algorithm introduces new parameter α, representing the ratio of water-leaving reflectance at the NIR wavelengths. α is calculated by statistical method and is assumed to be constant throughout the study area. Using this algorithm, we can obtain comparatively accurate water-leaving radiances in the moderately turbid waters where the NIR water-leaving reflectance is less than approximately 0.01. However, this algorithm still underestimates the water-leaving radiances at the extremely turbid water since the ratio of water-leaving radiance at two NIR wavelengths, α is changed with concentration of suspended particles. In this study, we modified the MUMM algorithm to calculate appropriate value for α using an iterative technique. As a result, the accuracy of water-leaving reflectance has been significantly improved. Specifically, the results show that the Root Mean Square Error(RMSE) of the modified MUMM algorithm was 0.002 while that of the MUMM algorithm was 0.0048.
:In this study, the target detection using both high-resolution satellite SAR and ElecroOptical (EO) images such as TerraSAR-X and WorldView-2 is performed, considering the characteristics of targets. The targets of our interest are featured by being stationary and appearing as cluster targets. After the target detection of SAR image by using Constant False Alarm Rate (CFAR) algorithm, a series of processes is performed in order to reduce false alarms, including pixel clustering, network clustering and coherence analysis. We extend further our algorithm by adopting the fast and effective ellipse detection in EO image using randomized hough transform, which is significantly reducing the number of false alarms. The performance of proposed algorithm has been tested and analyzed on TerraSAR-X SAR and WordView-2 EO images. As a result, the average false alarm for group of targets is 1.8 groups/64 km
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.