To improve genetic transformation of Brassica napus winter cultivar 'Youngsan', factors influencing shoot regeneration and transformation from cotyledonary petioles were investigated. Shoot induction was enhanced in the combination of 0.5 mg/L NAA and 2~4 mg/L kinetin. Silver nitrate was essential for successful shoot regeneration, ranging from 5 to 9 mg/L. The addition of GA 3 promoted plant regeneration. Among the tested Agrobacterium strains, co-cultivation times, and antibiotic selection regimes, choice of appropriate Agrobacterium strain was the most critical factor for efficient transformation of B. napus cv. 'Youngsan'. The EHA105 succinamopine strain was the most efficient and the maximum transformation efficiency was 26.8%. Transgenic shoots were selected on 10 mg/L phosphinothricin (PPT) containing media. The transgenic plants expressing bar and gus genes were resistant for commercial herbicide "Basta" and stained with X-Gluc. Southern blot hybridization indicated that the presence of one to three gus gene copies per genome and inheritance of the gus gene into the T 1 generation.
Eighteen cultivars of tomato were tested for their regeneration response. Lycopersicon esculentum cv. 2001-58 showed a very high frequency of regeneration (93%). We evaluated the effect of two compounds with known antioxidant activity (ascorbic acid and cystein). The use of ascorbic acid (200-300 μM/L) has a positive effect on shoot regeneration. To develope a system for plastid transformation in tomato via homologous recombination, we constructed the tomato plastid expression vector (pKRT22-AG) harboring 2.2 kb flanking sequences cloned from intact plastid genome and gfp gene. To investigate the factors affecting the delivery system of the pKRT22-AG into chloroplast using bombardment, We assessed the optimal DNA concentration, gold particle volume and target distance. Expression of the GFP protein was observed within chloroplast on protoplast of cotyledon explant by confocal laser scanning microscopy, which indicates that the protocol developed in this study be useful for the production of plastid transgenic plants in tomato.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.