In this paper, we propose the design of a dual-band GPS antenna using in-direct feeding pads. The antenna consists of an upper patch for the GPS L1 band, a lower patch for the GPS L2 band, and two pads on the middle layer for feeding the two radiating patches. A hybrid chip coupler with a phase difference of 90° is employed at the two feeding ports for achieving a broad circular polarization (CP) bandwidth. The proposed antenna shows bore-sight gains of 3.0 dBic(L1) and 5.1 dBic(L2), and axial ratios of 3.3 dB(L1) and 0.3 dB(L2) by measurement. The active element patterns of the fabricated array with 7 elements show bore-sight gains of -0.4 dBic (L1) and -2.4 dBic(L2), respectively. It proves that the proposed antenna structure is suitable for use in GPS array applications.
In this paper, we propose a design of dual-band patch antennas for Global Positioning System(GPS) applications, and the designed antenna is used as an individual element of GPS arrays. A low distortion and a high isolation of the array are achieved by adjusting rotating angles of each array element. The antenna consists of two radiating patches that operate in the GPS L1 and L2 bands, and the two ports feeding network with a hybrid chip coupler is adopted to achieve a broad circular polarization(CP) bandwidth. The rotating angles of each antenna element are varied with four directions(=0°, =90°, =180°, =270°) in order to minimize the pattern distortion and maximize the isolation among array elements. The measurement shows bore-sight gains of 0.3 dBic(L1) and -1.0 dBic(L2) for the center element. Bore-sight gains of 1.6 dBic(L1) and 1.0 dBic(L2) are observed for the edge element. This results demonstrate that the proposed antenna is suitable for GPS array applications.
In this paper, we propose a dual-band GPS antenna using a single-layer coupled-feed structure for improvement of isolation and design complexity. The proposed antenna consists of a central feed patch and outer dual loops, and the loops are electromagnetically fed by the feed patch to induce currents. This feeding network can improve the isolation between antenna elements arranged in small arrays because the magnetic field strength near the antenna is minimized by confining the fields around the dual loops. The isolation characteristics of the proposed antenna are compared with those of the conventional multi-layer patch antenna, and the average field strength and the isolation are improved by 3 dB and 2 dB, respectively, which verifies that the antenna is suitable for small CRPA arrays.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.