A military aircraft generally includes external stores such as fuel tanks or external arming, depending on the purpose of the operation. When a store is dropped from a military aircraft at high subsonic, transonic, or supersonic speeds, the aerodynamic forces and moments acting on the store can be sufficient to send the store back into contact with the aircraft. This can cause damage to the aircraft and endanger the life of the crew. In this study, time accurate computational fluid dynamics (CFD) with dynamic moving grid (moving and deformable mesh, MDM) technique has been used to accurately calculate store trajectories. For the verification of the present numerical approach, a wind tunnel test model for the wing-pylon-finned store configuration has been considered and analyzed. The comparison results for the ejected store trajectories between the present numerical analysis and the wind tunnel test data at the Mach number of 0.95 and 1.2 are presented. It is also importantly shown that the numerical parameter of MDM technique gives significant effect for the calculated store trajectory in the low-supersonic flow such as Mach 1.2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.