This study was to improve cosmetical activity of thiamine di-lauryl sulfate (TDS) by encapsulation of nanoparticle with lecithin. Results showed that most of the nanoparticles containing the TDS were well formed in round shape with below 150 ∼ 200 nm diameter as well as they were fairly stable in various pH ranges by measuring zeta potentials. The nanoparticles of TDS resulted in 85% cell viability of human normal fibroblast cells (CCD-986sk) when added at the highest concentration (1.0 mg/mL). The nanoparticles of Acer mono sap showed highest free radical scavengering effect as 88.1% in adding sample (1.0 mg/mL), compared to TDS solution of non-encapsulation (81.6%). The nanoparticles of TDS reduced the expression of MMP-1 on UV-irradiated CCD-986sk cells down to as 41.4%. The TDS solution and nanoparticles showed significant anti-microbial activities agaionst the salmonella typhimurium and listeria monocytogenes at 5 and 6 days as compared with control. Anti-microbial activities of TDS nanoparticles were similar to positive control. These results indicated that TDS nanoparticles may be a source for functional cosmetic agents capable of improving cosmetical activity such as antioxidant, whitening, and anti-wrinkling effects and can be further developed as natural preservative in cosmetics.
: A marine alga, Spirulina maxima, was extracted under high pressure and low temperature conditions at 500 MPa and 60 o C for 5 and 10 min. A high pressure of 500 MPa was applied to improve process yields because of low temperature extraction. This method resulted in highest higher extraction yield of 26.1% (w/w) in comparison to those results obtained from conventional extraction methods which produced a yield of 17.6% (w/w) from water. The extracts from this process also showed 19% of low cytotoxicity against human normal fibroblast cells in adding 1.0 mg/ml of the highest concentration. The crude extract significantly reduced the production of Prostaglandin E 2 (PGE 2 ) from CCD-986sk cells and increased nitric oxide production by macrophages. These higher activities of enhancing skin immune functions were found to have high antioxidant extract properties, like a 98% increase in DPPH radical scavenging activity. The extracts from the high pressure process showed a higher elution of active components than other processes and generated new compounds based on HPLC analysis. This clearly indicates that the extracts from high pressure and low temperature conditions have higher skin immune activation properties that have not been previously reported.
1) Among various pretreatment processes for bioethanol production, extrusion pretreatment, one of cheap and simple process was investigated to efficiently produce fermentable sugars from micro alga, Chlorella sp. The biomass was pretreated in a single screw extruder at five different barrel temperatures of 45, 50, 55, 60 and 65℃, respectively with five screw rotation speed of 10, 50, 100, 150 and 200 rpm. The pretreated biomass was reacted with two different hydrolyzing enzymes of cellulase and amyloglucosidase since the biomass contained different types of carbohydrates, compared to cellulose of agricultural by-products such wheat and corn stovers, etc. In general, higher glucose conversion yield was obtained as 13.24 (%, w/w) at 55℃ of barrel tem perature and 100 rpm of screw speed conditions. In treating 5 FPU/glucan of cellulase and 150 Unit/mL of amyloglucosidase, ca. 64% of cellulose and 40% of polysaccharides in the micro alga were converted into glucose, which was higher yields than those from other reported data without applying an extrusion process. 84% of the fermentable sugars obtained from the hyrolyzing processes were fermented into ethanol in considering 50% of theoretical maximum fermentation yield of the yeast. These results implied that high speed extrusion could be suitable as a pretreatment process for the production of bioethanol from Chlorella sp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.