Due to the recent development of Information and Communication Technologies (ICT), the amount of research publications has increased exponentially. In response to this rapid growth, the demand of automated text processing methods has risen to deal with massive amount of text data. Biomedical text mining discovering hidden biological meanings and treatments from biomedical literatures becomes a pivotal methodology and it helps medical disciplines reduce the time and cost. Many researchers have conducted literature-based discovery studies to generate new hypotheses. However, existing approaches either require intensive manual process of during the procedures or a semi-automatic procedure to find and select biomedical entities. In addition, they had limitations of showing one dimension that is, the cause-and-effect relationship between two concepts. Thus, this study proposed a novel approach to discover various relationships among source and target concepts and their intermediate concepts by expanding intermediate concepts to multi-levels. This study provided distinct perspectives for literature-based discovery by not only discovering the meaningful relationship among concepts in biomedical literature through graph-based path interference but also being able to generate feasible new hypotheses.키워드: 바이오 텍스트 마이닝, 문헌 기반 발견, 미발견 공공 지식, 그래프 모델 biotext mining, literature based discovery, undiscovered public knowledge, graph model
Due to the development of science and technology, the convergence of various disciplines has been fostered. Accordingly, interdisciplinary studies have increasingly been expanded by integrating knowledge and methodology from different disciplines. The primary focus of biblimetric methods is on investigating the intellectual structure a field, and analysis of the characterization of interdisciplinary studies is overlooked. In this study, we aim to identify the intellectual structure of the field of medical informatics through author co-citation analysis and co-word analysis by the representative journal "IEEE ENG MED BIOL." In addition, we examine authors and MeSH Terms of top three representative journals for further analysis of the field. We examine the intellectual structure of the medical informatics field by author and word clusters to identify the network structure of medical informatics disciplines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.