The adsorption characteristics of Sr ions and Cs ions in single and binary solution by zeolite A were investigated in batch experiment. The adsorption rate of Sr ions and Cs ions by zeolite A obeyed pseudo-second-order kinetic model in single and binary solution. The initial adsorption rates (h) and adsorption capacities of both ions obtained from pseudo-second-order kinetic model, and the values were decreased with increasing concentration of the competitive ions (0~1.5 mM). Also, adsorption isotherm data in binary solution were well fitted to the extended Langmuir model, the maximum adsorption capacities of Sr and Cs calculated from the model were 1.78 mmol/g and 1.64 mmol/g, respectively. The adsorption of Sr and Cs ions by zeolite A was carried out in the presence of other cations such as Na + , K + , Mg 2+ , and Ca 2+ . The results showed that the zeolite A can maintain a relatively high adsorption capacity for Sr and Cs ions and exhibits a high selectivity in the presence of competitive cations. The effect of competition had an order of Ca 2+ >K + >Mg 2+ >Na + for Sr ions and K + >Ca 2+ >Na + >Mg 2+ for Cs ions at the same cation concentration.
The purpose of this work is to study the desorption characteristics of water vapor on zeolites saturated with water vapor. Three kinds of zeolite; zeolite 3A, zeolite 4A, and zeolite 5A were used as adsorbent. The desorption experiments with several different temperatures in the range of 90∼150℃ and several different flow rates in the ranges of 0∼0.4 L/min on zeolite bed were carried out. The desorption ability of water vapor was most effective on zeolite 5A among the compared zeolites. The higher the desorption temperature of water vapor was, the faster the desorption velocity was. The desorption ability of water vapor with an air supply was higher than that without an air supply. The most appropriate air flow rate was considered as 0.1 L/min.
In order to remove fluoride ions from aqueous solution, PVC-Al(OH)3 beads were prepared by immobilizing Al(OH)3 with polyvinyl chloride (PVC). The prepared PVC-Al(OH)3 bead was characterized by using SEM, EDS and Zeta potential. Dependences of pH, contact time and initial fluoride concentration on the adsorption of fluoride ions were studied. The optimal pH was in the range of 4~10. The adsorption was rapid during the initial 12 hr, and equilibrium was attained within 72 hr. The adsorption rate of fluoride ions by PVC-Al(OH)3 beads obeyed the pseudo-second-order kinetic model. The maximum adsorption capacity obtained from Langmuir isotherm model was found to be 62.68 mg/g.
This work is to compare the experiment results by a continuous fixed-bed adsorption of water vapor, acetone vapor, and toluene vapor on zeolite 13X (SAU) and silica-alumina (SAK). SAU and SAK have very different pore structure but similar composition as inorganic adsorbent. The relationship between the equilibrium adsorption capacity and specific pore size range were studied. Adsorption of water vapor was more suitable on SAU than SAK because SAU has relatively more developed pores around 5 Å than SAK in the pore range of 10 ~ 100 Å. Adsorption of acetone vapor was more suitable on SAK than SAU because SAK has relatively more developed pores around 5~10 Å than SAK in the pore range of less than 10 Å. Adsorption of toluene vapor was more suitable on SAK than SAU because SAK has relatively more developed pores in the pore range of 10~100 Å than SAK. Adsorption capacity of the adsorbent was closely related to the surface area generated in the specific pore size region. But it was difficult to distinguish the relationships between adsorption capacity and micro area, and the external surface area of adsorbent.
A method of measuring the current and voltage is suggested in the circuit of cold cathode fluorescent lamps (CCFLs) which are driven at a high frequency of 50~100 kHz and a high voltage of several kV. It is difficult to measure the current and voltage in the lamp circuit, because the impedance of the probe at high voltage side causes the leakage current and the variation of luminance. According to the analysis of equivalence circuit with the probe impedance and leakage current, the proper measuring method is to adjust the input DC voltage and to keep the specific luminance when the probe is installed at a high voltage circuit. The lamp current is detected with a current probe or a high frequency current meter at the ground side and the voltage is measured with a high voltage probe at the high voltage side of lamp. The lamp voltage(V C) is measured between the ballast capacitor and the lamp electrode, and the output voltage(V I) of inverter is measured between inverter output and ballast capacitor. As the phases of lamp voltage(V C) and current (I G) are nearly the same values, the real power of lamp is the product of the lamp voltage(V C) by the lamp current(I G). The measured value of the phase difference between inverter output voltage(V I) and lamp current(I G) is appreciably deviated from the calculated value at cos=V C /V I .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.