Age-related Macular Degeneration (AMD) is the most common cause of blindness in old-age. Early identification of AMD can allow for mitigation (but not cure). One of the fist symptoms of AMD is the presence of fatty deposits, called drusen, on the retina. The presence of drusen may be identified through inspection of retina images. Given the aging global population, the prevalence of AMD is increasing. Many health authorities therefore run screening programmes. The automation, or at least partial automation, of retina image screening is therefore seen as beneficial. This paper describes a Case Based Reasoning (CBR) approach to retina image classification to provide support for AMD screening programmes. In the proposed approach images are represented in the form of spatial-histograms that store both colour and spatial image information. Each retina image is represented using a series of histograms each encapsulated as a time series curve. The Case Base (CB) is populated with a labelled set of such curves. New cases are classified by finding the most similar case (curve) in the CB. Similarity checking is achieved using the Dynamic Time warping (DTW).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.