Transgenic plant cell cultures for the production of biopharmaceuticals including monoclonal antibodies, recombinant proteins have been regarded as an alternative platform in addition to traditional microbial fermentation and mammalian cell cultures. Plant-made pharmaceuticals (PMPs) have several advantages such as safety, cost-effectiveness, scalability and possibility of complex post-translational modifications. Increasing demand for the quantity and diversity of pharmaceutical proteins may accelerate the industrialization of PMP technology. Up to date, there is no plant-made recombinant protein approved by USFDA (Food and Drug Administration) for human therapeutic uses due to the technological bottlenecks of low expression level and slight differences in glycosylation. Regarding expression levels, it is possible to improve the productivity by using stronger promoter and optimizing culture processes. In terms of glycosylation, humanization has been attempted in many ways to reduce immune responses and to enhance the efficacy as well as stability. In this review article, all these respects of transgenic plant cell cultures were summarized. In addition, we also discuss the general characteristics of plant cell suspension cultures related with bioreactor design and operation to achieve high productivity in large scale which could be a key to successful commercialization of PMPs.
In this research, recombinant human cytotoxic Tlymphocyte antigen 4-immunoglobulin (hCTLA4Ig) was produced by transgenic rice cells. RAmy3D promoter was used for overcome the limitation of low expression level in transgenic plant cells, and the secretion of target protein was accomplished by signal peptide. However, the RAmy3D promoter system which can be induced only by sugar starvation causes the decrease of cell viability. As a result, cell death promotes the release of protease which degrades the target proteins. The protein stability and productivity can be significantly influenced by proteolysis activity. Therefore, development of new strategies are necessary for the in situ recovery of target proteins from cell culture media. In this study, in situ recovery was performed by various strategies. Direct addition of Protein A resin with nylon bag leads to cell death by increased shear stress and decrease in production of hCTLA4Ig by protease. Medium exchange through modified flask could recover hCTLA4Ig with high cell viability and low protease activity, on the other hand, the productivity was lower than that of control. When in situ recovery was conducted at day 7 after induction in air-lift bioreactor, 1.94-fold of hCTLA4Ig could be recovered compared to control culture without in situ recovery. Consequently, in situ recovery of hCTLA4Ig from transgenic rice cell culture could enhance productivity significantly and prevent degradation of target proteins effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.