A graph G is almost hypohamiltonian if G is non‐hamiltonian, there exists a vertex w such that G−w is non‐hamiltonian, and for any vertex v≠w the graph G−v is hamiltonian. We prove the existence of an almost hypohamiltonian graph with 17 vertices and of a planar such graph with 39 vertices. Moreover, we find a 4‐connected almost hypohamiltonian graph, while Thomassen's question whether 4‐connected hypohamiltonian graphs exist remains open. We construct planar almost hypohamiltonian graphs of order n for every n≥74. During our investigation we draw connections between hypotraceable, hypohamiltonian, and almost hypohamiltonian graphs, and discuss a natural extension of almost hypohamiltonicity. Finally, we give a short argument disproving a conjecture of Chvátal (originally disproved by Thomassen), strengthen a result of Araya and Wiener on cubic planar hypohamiltonian graphs, and mention open problems.