⢠EPZ-5676 is a potent DOT1Linhibitor that causes tumor regressions in a rat xenograft model of MLL-rearranged leukemia.Rearrangements of the MLL gene define a genetically distinct subset of acute leukemias with poor prognosis. Current treatment options are of limited effectiveness; thus, there is a pressing need for new therapies for this disease. Genetic and small molecule inhibitor studies have demonstrated that the histone methyltransferase DOT1L is required for the development and maintenance of MLL-rearranged leukemia in model systems. Here we describe the characterization of EPZ-5676, a potent and selective aminonucleoside inhibitor of DOT1L histone methyltransferase activity. The compound has an inhibition constant value of 80 pM, and demonstrates 37 000-fold selectivity over all other methyltransferases tested. In cellular studies, EPZ-5676 inhibited H3K79 methylation and MLL-fusion target gene expression and demonstrated potent cell killing that was selective for acute leukemia lines bearing MLL translocations. Continuous IV infusion of EPZ-5676 in a rat xenograft model of MLL-rearranged leukemia caused complete tumor regressions that were sustained well beyond the compound infusion period with no significant weight loss or signs of toxicity. EPZ-5676 is therefore a potential treatment of MLL-rearranged leukemia and is under clinical investigation. (Blood. 2013;122(6):1017-1025 Introduction Rearrangements in the MLL gene at position 11q23 occur in 5% to 10% of acute leukemias of lymphoid, myeloid, or mixed/ indeterminant lineage and are especially common in infant acute leukemias and in secondary acute myeloid leukemias arising in patients following treatment of other malignancies with topoisomerase II inhibitors. [1][2][3][4] Acute leukemias bearing MLL rearrangements are aggressive diseases. Current treatment options are limited to chemotherapy and allogeneic hematopoietic stem cell transplantation; however, these have significant side effects and outcomes remain poor. As a result, there is intense interest in developing novel therapeutic strategies for this disease. The MLL gene encodes a large multidomain protein (MLL) that regulates transcription of developmental genes including the HOX genes. 1 The amino terminal portion of the protein contains regions that target MLL to DNA directly, whereas the carboxyl terminal portion of the protein contains a Su(Var)3-9, Enhancer of zeste and Trithorax domain with methyltransferase activity specific for lysine 4 of histone H3 (H3K4).5-9 MLL rearrangements result in the loss of the carboxyterminal methyltransferase domain and an in-frame fusion of the amino-terminal region of MLL to 1 of more than 60 potential fusion partners. [1][2][3] The vast majority of translocations result in oncogenic fusion proteins in which the native methyltransferase domain is replaced by sequences derived from AF4, AF9, AF10, and ENL, which interact with DOT1L directly or indirectly in complexes that promote transcriptional elongation.10-18 DOT1L is a histone methyltransferase enz...