Key message Carbonylation of proteins associated with a stress response may contribute to the lowered viability of naturally aged beech seeds, especially the desiccation tolerance-associated proteins and USP-like protein.Abstract Proteins are modified by a large number of reactions that involve reactive oxygen species-mediated oxidation. The direct oxidation of amino acids produces 2,4-dinitrophenylhydrazine-detectable protein products. Carbonylation is irreversible, and carbonylated proteins are marked for proteolysis or can escape degradation and form high molecular weight aggregates, which accumulate with age. Beech (Fagus sylvatica L.) seeds stored under optimal conditions for different periods of time, ranging from 2 to 13 years, were analyzed. Protein carbonylation was examined as a potential cause for the loss of viability of beech seeds, and the characteristic spots of protein carbonyls were identified. Here, we present and discuss the role of carbonylation in the proteome of beech seeds that contribute to the loss of seed viability during natural aging. The long-term storage of beech seeds is intricate because their germination capacity decreases with age and is negatively correlated with the level of protein carbonyls that accumulate in the seeds. We establish that protein synthesis, folding and degradation are the most affected biochemical traits in long-term stored beech seeds. In addition, we suggest that proteins associated with the stress response may have contributed to the lowered viability of beech seeds, especially the desiccation toleranceassociated proteins that include T-complex protein 1 and the universal stress protein (USP)-like protein, which is identified as carbonylated for first time here.