Current best-match ranking (BMR) systems perform well but cannot handle word mismatch between a query and a document. The best known alternative ranking method, hierarchical clustering-based ranking (HCR), seems to be more robust than BMR with respect to this problem, but it is hampered by theoretical and practical limitations. We present an approach to document ranking that explicitly addresses the word mismatch problem by exploiting interdocument similarity information in a novel way. Document ranking is seen as a query-document transformation driven by a conceptual representation of the whole document collection, into which the query is merged. Our approach is based on the theory of concept (or Galois) lattices, which, we argue, provides a powerful, well-founded, and computationally-tractable framework to model the space in which documents and query are represented and to compute such a transformation. We compared information retrieval using concept lattice-based ranking (CLR) to BMR and HCR. The results showed that HCR was outperformed by CLR as well as by BMR, and suggested that, of the two best methods, BMR achieved better performance than CLR on the whole document set while CLR compared more favorably when only the first retrieved documents were used for evaluation. We also evaluated the three methods' specific ability to rank documents that did not match the query, in which case the superiority of CLR over BMR and HCR (and that of HCR over BMR) was apparent.