For many years, the manufacturing industry has shown interest in the opportunities offered by welding of dissimilar metals. The need for appropriate and effective techniques has increased in recent decades because of efforts to build light and strong vehicles with reduced fuel consumption. In addition, the thermal conductivity, corrosion resistance, and recyclability are other reasons to weld dissimilar non-ferrous metal. Early gas metal arc welding (GMAW) processes had limited control of the heat input, a prerequisite for effective welding of dissimilar metals, but the advanced GMAW processes of the past decades offer new perspectives. The objective of this paper is to review the main principles of the fusion welding of dissimilar metals. The study briefly investigates the challenges in welding the main possible combination of categories of non-ferrous metal. Some experiments performed on dissimilar metals using GMAW processes are then reviewed, highlighting those made using advanced GMAW processes. The study collates data from the scientific literature on fusion dissimilar metal welding (DMW), advanced GMAW processes, and experiments conducted with conventional GMAW. The study shows that the welding procedure specification is a crucial factor in DMW. Advanced GMAW processes have significant potential in the fusion welding of dissimilar non-ferrous metals of different grades. Accurate control of the heat input allows more effective prediction of the intermetallic properties and better control of post-heat treatments. Increased understanding of advanced GMAW processes will permit the development of more accurate specifications of welding procedures for DMW. Process flexibility and adaptability to robotic mass production will allow a wider range of applications and the avoidance of costly alternative methods.