The corrosion resistance of a weld has a great impact on the service life of the joint. Changes in welding parameters can cause changes to the heat input, which affect the formation of the weld bead and the precipitation of the second phase, which determines the corrosion resistance of the weld. In this paper, the effect of a change in the welding speed on 2195 aluminium–lithium (Al–Li) alloy joints welded by laser and metal inert gas (laser‐MIG) hybrid welding using Al–Si welding wire was studied. The macrostructure and microstructure of the weld were characterized by optical microscopy, X‐ray diffraction, and scanning electron microscopy. The results show that the predominant precipitates in the laser‐MIG hybrid welded Al–Li alloy were the θ (Al2Cu) and T (Al–Li–Si) phases. As the welding speed increased from 11.5 mm/s to 16.5 mm/s, the heat input decreased, and the amount of the precipitated phase increased. Intergranular corrosion and electrochemical experiments were carried out on the weld seam, and the corrosion resistance was tested. With increasing welding speed, the corrosion resistance of the weld decreased. The high potential of the precipitated phase decreased the corrosion resistance of the weld joint.
In the present study, 2195 aluminium-lithium (Al-Li) alloy joints were welded by laser-metal inert gas (laser-MIG) hybrid welding. The effect of different laser powers (700, 1000, and 1300 W) on the microstructures and mechanical properties of the weld joints was investigated. The dendritic solidification structure of the weld joint comprised the α-Al, θ -(Al 2 Cu), and T-(AlLiSi) phases. When the laser power increased, the grains coarsened, and the amount of the precipitated phase decreased. Consequently, the micro-hardness of the weld decreased. The heat input also increased with the increase in laser power. This increased the fluidity and solidification time of the liquid metal at the bottom of the molten pool. Therefore, the deposition of the particles of the refractory metal compounds and the formation of the equiaxed grain zone (EQZ) was hindered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.