Driving a car is a highly visual task. Despite the trend towards increased driver assistance and autonomous vehicles, drivers still need to interact with the car for both driving and non-driving relevant tasks, at times simultaneously. The often-resulting high cognitive load is a safety issue, which can be addressed by providing the driver with alternative feedback modalities, such as haptics. Recent trends in the automotive industry are moving towards the seamless integration of control elements through touch-sensitive surfaces. Psychological knowledge on optimally utilizing haptic technologies remains limited. The literature on automotive haptic feedback consists mainly of singular findings without putting them into a broader user context with respect to haptic design of interfaces. Moreover, haptic feedback has primarily been limited to the confirmation of control actions rather than the searching or finding of control elements, the latter of which becomes particularly important considering the current trends. This paper presents an integrated framework on haptic processing in automotive user interfaces and provides guidelines for haptic design of user interfaces in car interiors.