This paper takes a performance-based approach to review the broad expanse of literature relating to whole-body models of human bioenergetics. It begins with an examination of the critical power model and its assumptions. Although remarkably robust, this model has a number of shortcomings. Attention to these has led to the development of more realistic and more detailed derivatives of the critical power model. The mathematical solutions to and associated behaviour of these models when subjected to imposed "exercise" can be applied as a means of gaining a deeper understanding of the bioenergetics of human exercise performance.