Abstract:2D arrays of Au-PNIPAM core-shell nanocrystals were fabricated using convective deposition and spin-coating. The particle density and ordering were studied by AFM. Annealing at 700 °C removes the polymer shell, while retaining a monolayer of well-separated gold nanoparticles. The surface plasmon modes of the colloid monolayers could be measured by spectroscopic ellipsometry.
Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are notoriously difficult to manipulate due to complex nanoscale forces among them. An effective way to manipulate these nanoscale forces is to use soft ligands, which can prevent nanoparticles from disordered aggregation, fine‐tune the interparticle potential as well as program lattice structures and interparticle distances – the two key parameters governing superlattice properties. This article aims to review the up‐to‐date advances of superlattices from the viewpoint of soft ligands. We first describe the theories and design principles of soft‐ligand‐based approach and then thoroughly cover experimental techniques developed from soft ligands such as molecules, polymer and DNA. Finally, we discuss the remaining challenges and future perspectives in nanoparticle superlattices.
Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are notoriously difficult to manipulate due to complex nanoscale forces among them. An effective way to manipulate these nanoscale forces is to use soft ligands, which can prevent nanoparticles from disordered aggregation, fine‐tune the interparticle potential as well as program lattice structures and interparticle distances – the two key parameters governing superlattice properties. This article aims to review the up‐to‐date advances of superlattices from the viewpoint of soft ligands. We first describe the theories and design principles of soft‐ligand‐based approach and then thoroughly cover experimental techniques developed from soft ligands such as molecules, polymer and DNA. Finally, we discuss the remaining challenges and future perspectives in nanoparticle superlattices.
“…This could be used to determine the molar mass of the overall hybrid particles simply from absorbance measurements. In a different work, Mulvaney et al [62] have shown that the control over the shell thickness of gold-poly-(NIPAM) microgels can be used in the preparation of particle monolayers with different intercore separation distances. In this work, the authors employed different deposition techniques to produce self-assembled monolayers of the core-shell particles and studied the surface coverage and core-to-core distance.…”
This review summarizes recent research dedicated to hybrid colloids combining inorganic nanoparticles and cross-linked polymer networks. We discuss aspects of synthesis, characterization, and application of systems with different morphologies and properties. Due to the large number of works in the field of composite materials, we focus on materials with responsive polymer components, which are dispersed in aqueous media.
“…Once the substrate is covered with colloidal particles with specific inter-particle spacing, surface coverage determines the optical properties, that is, absorption, scattering and transmission [132][133][134][135]. Whereas a low area fraction f area of only a few percent will only have negligible influence, a high area fraction will for example significantly lower the transmission through this layer.…”
Colloidal particles show interaction with electromagnetic radiation at optical frequencies. At the same time clever colloid design and functionalization concepts allow for versatile particle assembly providing monolayers of macroscopic dimensions. This has led to a significant interest in assembled colloidal structures for light harvesting in photovoltaic devices. In particular thin-film solar cells suffer from weak absorption of incoming photons. Consequently light management using assembled colloidal structures becomes vital for enhancing the efficiency of a given device. This review aims at giving an overview of recent developments in colloid synthesis, functionalization and assembly with a focus on light management structures in photovoltaics. We distinguish between optical effects related to the single particle properties as well as collective optical effects, which originate from the assembled structures.Colloidal templating approaches open yet another dimension for controlling the interaction with light. We focus in this respect on structured electrodes that have received much attention due to their dual functionality as light harvesting systems and conductive electrodes and highlight the impact of interparticle spacing for templating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.