Plasmon-active silver nanoparticle layers were included in solution-processed bulk-heterojunction solar cells. Nanoparticle layers were fabricated using vapor-phase deposition on indium tin oxide electrodes. Owing to the increase in optical electrical field inside the photoactive layer, the inclusion of such particle films lead to increased optical absorption and consequently increased photoconversion at solar-conversion relevant wavelengths. The resulting solar energy conversion efficiency for a bulk heterojunction photovoltaic device of poly(3-hexylthiophene)/[6,6]-phenyl C61 butyric acid methyl ester was found to increase from 1.3%±0.2% to 2.2%±0.1% for devices employing thin plasmon-active layers. Based on six measurements, the improvement factor of 1.7 was demonstrated to be statistically significant.
Room temperature single-photon emission and quantum characterization is reported for isolated defects in zinc oxide. The defects are observed in thin films of both in-house synthesized and commercial zinc oxide nanoparticles. Emission spectra in the red and infrared, second-order photon correlation functions, lifetime measurements, and photon count rates are presented. Both two- and three-state emitters are identified. Sub-band gap absorption and red emission suggest these defects are the zinc vacancy. These results identify a new source of single photons in a readily available wide band gap semiconductor material which has exceptional electrical, optical, and biocompatibility properties.
Random silver nanohole films were created through colloidal lithography techniques and metal vapor deposition. The transparent electrodes were characterized by uv-visible spectroscopy and incorporated into an organic solar cell. The test cells were evaluated for solar power-conversion efficiency and incident photon-to-current conversion efficiency. The incident photon-to-current conversion efficiency spectra displayed evidence that a nanohole film with 92nm diameter holes induces surface-plasmon-enhanced photoconversion. The nanohole silver films demonstrate a promising route to removing the indium tin oxide transparent electrode that is ubiquitous in organic optoelectronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.