We describe here a simple, all-inorganic metal/NC/metal sandwich photovoltaic (PV) cell that produces an exceptionally large short-circuit photocurrent (>21 mA cm -2 ) by way of a Schottky junction at the negative electrode. The PV cell consists of a PbSe NC film, deposited via layer-by-layer (LbL) dip coating that yields an EQE of 55-65% in the visible and up to 25% in the infrared region of the solar spectrum, with a spectrally corrected AM1.5G power conversion efficiency of 2.1%. This NC device produces one of the largest short-circuit currents of any nanostructured solar cell, without the need for sintering, superlattice order or separate phases for electron and hole transport. Figure 1 shows the structure, current-voltage performance, EQE spectrum, and proposed band diagram of our device. Device fabrication consists of depositing a 60-300 nm-thick film of monodisperse, spheroidal PbSe NCs onto patterned indium tin oxide (ITO) coated glass using a layer-by-layer dip coating method, followed by evaporation of a top metal contact. In this LbL method, 1 a layer of NCs is deposited onto the ITO surface by dip coating from a hexane solution and then washed in 0.01 M 1,2-ethanedithiol (EDT) in acetonitrile to remove the electrically insulating oleate ligands that originally solubilize the NCs (see Supporting Information). Large-area, crack-free and mildly conductive (σ ) 5 × 10 -5 S cm -1 ) NC films result. The NCs pack randomly in the films, are partially coated in adsorbed ethanedithiolate, and show p-type conductivity under illumination. 1 X-ray diffraction and optical absorption spectroscopy established that the NCs neither ripen nor sinter in response to EDT exposure. We have found that using methylamine instead of EDT yields similar device performance (Supporting Information, Figure 1). 2 We have also fabricated working devices from PbS and CdSe NCs (Supporting Information, Figures 2 and 3), which indicates that the approach adopted here is not restricted to EDT-treated PbSe NCs and that it should be possible to improve cell efficiency by engineering the surface of the NCs to attain longer carrier diffusion lengths and higher photovoltages through surface state passivation and prevention of Fermi level pinning.When tested in nitrogen ambient under simulated 1-sun test conditions (100 ( 5 mW cm -2 ELH white light illumination), EDT-treated PbSe devices exhibit large shortcircuit photocurrent densities (J SC ) and modest open-circuit voltages (V OC ) and fill factors (FF), with one of the most efficient devices yielding J SC ) 24.5 mA cm -2 , V OC ) 239 mV, FF ) 0.41 and a mismatch-corrected 3 AM1.5G efficiency of 2.1% (Figure 1a; see Supporting Information regarding spectral mismatch). The mismatch-corrected J SC values of these devices are reproducibly larger than those of other nanostructured solar cells, including the best organic 4 and dye-sensitized devices, 5 which is remarkable considering the unsintered, glassy microstructure of our NC films and the fact that the NCs retain quantum confinement...
Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
All-perovskite–based polycrystalline thin-film tandem solar cells have the potential to deliver efficiencies of >30%. However, the performance of all-perovskite–based tandem devices has been limited by the lack of high-efficiency, low–band gap tin-lead (Sn-Pb) mixed-perovskite solar cells (PSCs). We found that the addition of guanidinium thiocyanate (GuaSCN) resulted in marked improvements in the structural and optoelectronic properties of Sn-Pb mixed, low–band gap (~1.25 electron volt) perovskite films. The films have defect densities that are lower by a factor of 10, leading to carrier lifetimes of greater than 1 microsecond and diffusion lengths of 2.5 micrometers. These improved properties enable our demonstration of >20% efficient low–band gap PSCs. When combined with wider–band gap PSCs, we achieve 25% efficient four-terminal and 23.1% efficient two-terminal all-perovskite–based polycrystalline thin-film tandem solar cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.