Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis.
The
operational stability of perovskite solar cells (PSCs) remains a limiting
factor in their commercial implementation. We studied the long-term
outdoor stability of ITO/SnO2/Cs0.05((CH3NH3)0.15(CH(NH2)2)0.85)0.95PbI2.55Br0.45/spiro-OMeTAD/Au cells, as well as the dynamics of their degradation,
under simulated sunlight indoors and their recovery in the dark. The
extent of overall degradation was found to depend on processes occurring
both under illumination and in the dark, i.e., during the daytime
and nighttime, with the dynamics varying with cell aging. Full recovery
of efficiency in the dark was observed for cells at early degradation
stages. Further cell degradation resulted in recovery times much longer
than one night, appearing as irreversible degradation under real operational
conditions. At later degradation stages, very different dynamics were
observed: short-circuit current density and fill factor exhibited
a pronounced drop upon light turn-off but strong improvement under
subsequent illumination. The interplay of reversible and irreversible
degradation processes with different recovery dynamics was demonstrated
to result in changes in the cell’s diurnal PCE dependence during
its operational lifespan under real sunlight conditions.
Large datasets are now ubiquitous as technology enables higher-throughput experiments, but rarely can a research field truly benefit from the research data generated due to inconsistent formatting, undocumented storage or improper dissemination. Here we extract all the meaningful device data from peer-reviewed papers on metal-halide perovskite solar cells published so far and make them available in a database. We collect data from over 42,400 photovoltaic devices with up to 100 parameters per device. We then develop open-source and accessible procedures to analyse the data, providing examples of insights that can be gleaned from the analysis of a large dataset. The database, graphics and analysis tools are made available to the community and will continue to evolve as an open-source initiative. This approach of extensively capturing the progress of an entire field, including sorting, interactive exploration and graphical representation of the data, will be applicable to many fields in materials science, engineering and biosciences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.