Baicalin exhibits antibacterial, anti‑viral, anti‑oxidative, antipyretic, analgesic, anti‑inflammatory and anti‑tumor properties. The chemical scavenges oxygen free radicals, protects the cardiovascular system and neurons, protects the liver, and has been used for the prevention and treatment of diabetes‑associated complications. The present study investigated the effect of baicalin on severe burn‑induced remote acute lung injury (ALI). The present study demonstrated that baicalin significantly decreased the lung wet‑to‑dry weight ratio, improved pulmonary histological alterations and reduced the expression of high mobility group protein B1 in the rat model of ALI. In addition, treatment with baicalin decreased tumor necrosis factor‑α, interleukin (IL)‑8, IL‑1β and IL‑18 concentrations in the serum, reduced myeloperoxidase activity and malondialdehyde content, and increased the level of superoxide dismutase in the serum in treated model rats with ALI. As a result, baicalin significantly suppressed nucleotide‑binding oligomerization, NACHT, LRR and PYD domains‑containing protein 3 (NLRP3), caspase‑1, nuclear factor‑κB and matrix metalloproteinase‑9 protein expression in the rat model of ALI. The results of the present study suggested that baicalin may serve a protective role against ALI in rats through the NLRP3 signaling pathway.