Scope: Gut barrier dysfunction and inflammation originating from a dysbiotic gut microbiota (GM) are strongly associated with a high-fat diet (HFD). Anthocyanins from Lycium ruthenicum (ACs) show antiobesity effects through modulating the GM. However, the mechanism linking the antiobesity effects of ACs and GM modulation remains obscure. Methods and results: To investigate the ameliorative effects of ACs on colonic barrier dysfunction and inflammation, mice are fed an HFD with or without ACs at doses of 50, 100, and 200 mg kg −1 for 12 weeks. AC supplementation reduced weight gain, enriched short-chain fatty acid (SCFA)-producing bacteria (e.g., Ruminococcaceae, Muribaculaceae, Akkermansia, Ruminococcaceae_UCG-014, and Bacteroides) and SCFA content, depleted endotoxin-producing bacteria (e.g., Helicobacter and Desulfovibrionaceae), and decreased endotoxin (i.e., lipopolysaccharide) levels. SCFAs substantially activated G protein-coupled receptors (GPRs), inhibited histone deacetylases (HDAC), increased intestinal tight junction mRNA and protein expression levels, reduced intestinal permeability, and protected intestinal barrier integrity in HFD-induced mice. These effects mitigate intestinal inflammation by inhibiting the LPS/NF-B/TLR4 pathway. Conclusion: These data indicates that ACs can mitigate colonic barrier dysfunction and inflammation, induce SCFA production and inhibit endotoxin production by modulating the GM in HFD-fed mice. This finding provides a clue for understanding the antiobesity effects of ACs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.