Purpose
The purpose of this paper is to present experimental studies on the designed muffler which contains ceramic foam and has the integration function of purification and noise elimination.
Design/methodology/approach
Comparative tests were done on a diesel engine with no muffler, the original muffler and the purification muffler. The soot index (light absorption coefficient), A-weighted sound pressure level and fuel consumption rate, which were collected by the partial flow opacity method, the insertion loss measurement of spatial five points and the load characteristics tests, respectively, and the effects of purification and noise elimination were studied.
Findings
The results of this paper state that the purification muffler shows great improvement on exhaust soot purification and noise elimination. The variation in diesel fuel consumption rate was small, the sound pressure level of purification muffler was reduced by 6 to 10 dB, the insertion loss of the purification muffler was increased by 6.41 dB and the average light absorption coefficient decreased by 57.8 percent compared with the original muffler.
Originality/value
The value of this study is that it supplies a purification muffler which contains a ceramic foam. Under the prerequisite of little effect on the fuel economy of diesel engine, the purification muffler shows great improvement in exhaust soot purification and noise elimination.