A simple, instrument-free, paper-based analytical device with dual-emission carbon dots (CDs) (blue CDs and red CDs) was developed for the semiquantitative, visual, and sensitive speciation analysis of lead ions in a real sample with a sensitive detection limit of 2.89 nM. When a paper strip was immersed into the sample solution, the blue fluorescence was quenched by Pb 2+ in solution, while the red fluorescence served as a background reference without color change, and significant color evolutions from blue to red were observed under the ultraviolet lamp, resulting in a semiquantitative visual detection. Furthermore, a smartphone was used in the visual detection of lead ions by identifying the RGB value of the fluorescent probe solution and corresponding paper strip. The application of smartphones and fluorescent paper strips has greatly shortened the detection time and reduced the cost of detection, providing a new strategy for the on-site and semiquantitative detection of heavy-metal ions in water samples.
The white backlight in displays is generated by optimizing the proportions of individual emitters with different wavelengths by variations in materials composition, phase, and structure. Color pixels usually result from the separation of white light or the excitation with multiwavelength or multipulse sources. However, it is a challenge to develop a material that comprises a single structure and emits over the full visible spectrum, but where the emission wavelengths can be controlled by a simple excitation source. Herein, we report an upconversion nanostructure that incorporates several lanthanide ions in the same core@shell@shell structure. The combination of multiple narrow spectral bands results in the emission of white light. The emission colors can be tuned by changing the excitation power density, which manipulates the photon transfer pathways. Applications such as flat-panel displays and imaging have been demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.