A simple, instrument-free, paper-based analytical device with dual-emission carbon dots (CDs) (blue CDs and red CDs) was developed for the semiquantitative, visual, and sensitive speciation analysis of lead ions in a real sample with a sensitive detection limit of 2.89 nM. When a paper strip was immersed into the sample solution, the blue fluorescence was quenched by Pb 2+ in solution, while the red fluorescence served as a background reference without color change, and significant color evolutions from blue to red were observed under the ultraviolet lamp, resulting in a semiquantitative visual detection. Furthermore, a smartphone was used in the visual detection of lead ions by identifying the RGB value of the fluorescent probe solution and corresponding paper strip. The application of smartphones and fluorescent paper strips has greatly shortened the detection time and reduced the cost of detection, providing a new strategy for the on-site and semiquantitative detection of heavy-metal ions in water samples.
Instrument-free, portable, and direct read-out minidevices have wider application prospects in various fields, especially for real-time/on-site sensing. Herein, combined with a paper strip, a smartphone sensing platform integrated with a UV lamp and dark cavity by 3D-printing technology has been developed for the rapid, sensitive, instrument-free, and visual quantitative analysis in real-time/on-site conditions. The platform proved the feasibility for visual quantitative detection of pesticide via a fluorescence "on−off−on" response with a single dualemissive ratiometric paper strip. Red-emitting CdTe quantum dots (rQDs) were embedded into the silica nanoparticles (SiO 2 NPs) as an internal reference, while blue-emitting carbon dots (bCDs) as a signal report unit were covalently linked to the outer surface of SiO 2 NPs. The blue fluorescence could be quenched by gold nanoparticles (Au NPs) and then recovered with pesticide. The red (R), green (G), and blue (B) channel values of the generated images were determined by a color recognizer application (APP) installed in the smartphone, and the R/B values could be used for pesticide quantification with a sensitive detection limit (LOD) of 59 nM. The smartphone sensing platform based on 3D printing might provide a general strategy for visual quantitative detection in a variety of fields including environments, diagnosis, and safety monitoring.
A high-resolution miniature spectrometer has been demonstrated by utilizing a 128-channel integrated filter array, fabricated by using the combinatorial deposition technique, as a dispersive component whose passbands range from 722.0 to 880.0 nm with a bandwidth (or spectral resolution) from 1.7 to 3.8 nm and an average channel interval of 1.2 nm. The miniature spectrometer is smaller than 1 cm3 without any moving parts. This kind of miniature spectrometer has the advantages of very low payload, high resolution, and high reliability simultaneously, which are especially urgently needed for space applications.
Negative differential-resistance (NDR) molecular device is realized involving two C60 molecules, one is adsorbed on the tip of a scanning tunneling microscope and the other is on the surface of the hexanethiol self-assembled monolayer. The narrow local density of states features near the Fermi energy of the C60 molecules lead to the obvious NDR effect. Such controllable tunneling structure and the associated known electronic states ensure the stability and reproducibility of the NDR device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.