Replication-dependent histone mRNAs end with a conserved stem loop that is recognized by stem-loop-binding protein (SLBP). The minimal RNA-processing domain of SLBP is phosphorylated at an internal threonine, and Drosophila SLBP (dSLBP) also is phosphorylated at four serines in its 18-aa C-terminal tail. We show that phosphorylation of dSLBP increases RNA-binding affinity dramatically, and we use structural and biophysical analyses of dSLBP and a crystal structure of human SLBP phosphorylated on the internal threonine to understand the striking improvement in RNA binding. Together these results suggest that, although the C-terminal tail of dSLBP does not contact the RNA, phosphorylation of the tail promotes SLBP conformations competent for RNA binding and thereby appears to reduce the entropic penalty for the association. Increased negative charge in this C-terminal tail balances positively charged residues, allowing a more compact ensemble of structures in the absence of RNA.X-ray crystallography | NMR | intrinsically disordered protein H istone synthesis increases at the beginning of S-phase to package newly replicated DNA with histone proteins, but synthesis must be shut down rapidly and histone mRNA degraded at the end of DNA replication because of the toxicity of surplus histone proteins (1, 2). This cyclic demand for histones requires strict regulation, which is achieved mainly by controlling the synthesis and degradation of histone mRNA (3). Replication-dependent histone mRNAs are the only known cellular mRNAs that are not polyadenylated and instead end with a conserved stem loop (4). Histone mRNAs are generated from longer histone pre-mRNAs as a result of an endonucleolytic cleavage between the stem loop and a purine-rich downstream sequence termed the "histone downstream element" (HDE) (5).Stem-loop-binding protein (SLBP), also known as "hairpinbinding protein" (6), binds to the histone mRNA stem loop, and U7 small nuclear ribonucleoprotein binds to the HDE (7). Other factors, including the endonuclease CPSF-73, are involved in both polyadenylation and histone mRNA 3′-end processing (8-11). In mammalian nuclear extracts, SLBP is not absolutely required for the biochemical reaction of processing (12). In contrast, cleavage of histone pre-mRNA in Drosophila cells and nuclear extracts requires the binding of SLBP to the stem loop (10, 13).The minimal histone mRNA processing domain of Drosophila SLBP contains a 72-aa RNA-binding domain (RBD) unique to SLBPs and an 18-aa C-terminal region (Fig. 1A) (14). This RNAprocessing domain (RPD) is necessary and sufficient for histone mRNA 3′-end processing in vitro (15). The RBDs of human SLBP (hSLBP) and Drosophila SLBP (dSLBP) are phosphorylated at a Thr residue in a conserved TPNK motif (16,17). The recent crystal structure of hSLBP RBD in complex with histone mRNA stem loop and 3′ hExo, a 3′-5′ exonuclease required for histone mRNA degradation, provided the first molecular insights into the architecture of this complex, and revealed how the hSLBP RBD forms a new ...