2020
DOI: 10.1101/2020.09.27.302927
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

3Cnet: Pathogenicity prediction of human variants using knowledge transfer with deep recurrent neural networks

Abstract: Thanks to the improvement of New Generation Sequencing (NGS), genome-based diagnosis for rare disease patients become possible. However, accurate interpretation of human variants requires massive amount of knowledge gathered from previous researches and clinical cases. Also, manual analysis for each variant in the genome of patients takes enormous time and effort of clinical experts and medical doctors. Therefore, to reduce the cost of diagnosis, various computational tools have been developed for the pathogen… Show more

Help me understand this report
View published versions

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 44 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?