In the next decades, gene editing technologies are expected to be used in the treatment and prevention of human diseases. Yet, the future uses of gene editing in medicine are still unknown, including its applicability and effectiveness to the treatment and prevention of infectious diseases, cancer, and monogenic and polygenic hereditary diseases. This study aims to address this gap by analyzing the views of over 1,000 gene editing-related researchers from all over the world. Some of our survey results show that, in the next 10 years, DNA double-strand breaks are expected to be the main method for gene editing, and CRISPR-Cas systems to be the mainstream programmable nuclease. In the same period, gene editing is expected to have more applicability and effectiveness to treat and prevent infectious diseases and cancer. Off-targeting mutations, reaching therapeutic levels of editing efficiency, difficulties in targeting specific tissues in vivo, and regulatory and ethical challenges are among the most relevant factors that might hamper the use of gene editing in humans. In conclusion, our results suggest that gene editing might become a reality to the treatment and prevention of a variety of human diseases in the coming 10 years. If the future confirms these researchers' expectations, gene editing could change the way medicine, health systems, and public health deal with the treatment and prevention of human diseases.