In this paper, mobile robot navigation on a 3D terrain with a single obstacle is addressed. The terrain is modelled as a smooth, complete manifold with well-defined tangent planes and the hazardous region is modelled as an enclosing circle with a hazard grade tuned radius representing the obstacle projected onto the terrain to allow efficient path-obstacle intersection checking. To resolve the intersections along the initial geodesic, by resorting to the geodesic ideas from differential geometry on surfaces and manifolds, we present a geodesic-based planning and replanning algorithm as a new method for obstacle avoidance on a 3D terrain without using boundary following on the obstacle surface. The replanning algorithm generates two new paths, each a composition of two geodesics, connected via critical points whose locations are found to be heavily relying on the exploration of the terrain via directional scanning on the tangent plane at the first intersection point of the initial geodesic with the circle. An advantage of this geodesic path replanning procedure is that traversability of terrain on which the detour path traverses could be explored based on the local Gauss-Bonnet Theorem of the geodesic triangle at the planning stage. A simulation demonstrates the practicality of the analytical geodesic replanning procedure for navigating a constant speed point robot on a 3D hill-like terrain.