Wearable electronic skin (e-skin) has provided a revolutionized way to intelligently sense environmental stimuli, which shows prospective applications in health monitoring, artificial intelligence and prosthetics fields. Drawn inspiration from biological skins, developing e-skin with multiple stimuli perception and self-healing abilities not only enrich their bionic multifunctionality, but also greatly improve their sensory performance and functional stability. In this review, we highlight recent important developments in the material structure design strategy to imitate the fascinating functionalities of biological skins, including molecular synthesis, physical structure design, and special biomimicry engineering. Moreover, their specific structure-property relationships, multifunctional application, and existing challenges are also critically analyzed with representative examples. Furthermore, a summary and perspective on future directions and challenges of biomimetic electronic skins regarding function construction will be briefly discussed. We believe that this review will provide valuable guidance for readers to fabricate superior e-skin materials or devices with skin-like multifunctionalities and disparate characteristics.