Ni/NiO core/shell nanoparticles having high affinity with polyhistidine were synthesized by decomposition of a Ni surfactant complex followed by air oxidation. Ni/NiO nanoparticles showed selective and efficient binding to histidine-tagged proteins and easy separation by using a magnet. These provided a more convenient way to efficient purification of histidine-tagged proteins compared with the conventional Ni-NTA complex-bound resins and microbeads.
In this paper we provide explanations to the complex growth phenomena of GaN heteroepitaxy on nonpolar orientations using the concept of kinetic Wulff plots (or v-plots). Quantitative mapping of kinetic Wulff plots in polar, semipolar, and nonpolar angles are achieved using a differential measurement technique from selective area growth. An accurate knowledge of the topography of kinetic Wulff plots serves as an important stepping stone toward model-based control of nonpolar GaN growth. Examples are illustrated to correlate growth dynamics based on the kinetic Wulff plots with commonly observed features, including anisotropic nucleation islands, highly striated surfaces, and pentagonal or triangular pits.
Aviation emissions impact surface air quality at multiple scales-from near-airport pollution peaks associated with airport landing and take off (LTO) emissions, to intercontinental pollution attributable to aircraft cruise emissions. Previous studies have quantified aviation's air quality impacts around a specific airport, in a specific region, or at the global scale. However, no study has assessed the air quality and human health impacts of aviation, capturing effects on all aforementioned scales. This study uses a multi-scale modeling approach to quantify and monetize the air quality impact of civil aviation emissions, approximating effects of aircraft plume dynamics-related local dispersion (∼1 km), near-airport dispersion (∼10 km), regional (∼1000 km) and global (∼10 000 km) scale chemistry and transport. We use concentration-response functions to estimate premature deaths due to population exposure to aviation-attributable PM 2.5 and ozone, finding that aviation emissions cause ∼16 000 (90% CI: 8300-24 000) premature deaths per year. Of these, LTO emissions contribute a quarter. Our estimate shows that premature deaths due to long-term exposure to aviation-attributable PM 2.5 and O 3 lead to costs of ∼$21 bn per year. We compare these costs to other societal costs of aviation and find that they are on the same order of magnitude as global aviation-attributable climate costs, and one order of magnitude larger than aviation-attributable accident and noise costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.