A broadband high-gain millimeter-wave (mmWave) array beamforming network (BFN) design, analysis, and implementation based on the Rotman lens antenna array feeding are presented. The BFN is intended for operation in the (26-40) GHz frequency band for a wide range of potential applications in the fifth generation (5G). The system is made on Rogers substrate, RO6010, to provide compatibility with standard planar low-cost processing techniques for millimeter-wave monolithic integrated circuit (MMIC). The measured results show the system capability of 80 • beam scanning for different angles at −39.7 • , −26.5 • , −13.3 • , 0 • , +13.3 • , +26.5 • , and +39.5 • at 28 GHz. With these features in addition to being compact size, low profile, and lightweight, this BFN is suitable for various millimeter-wave and 5G applications such as the advanced multi-in multi-out (MIMO) systems, remote sensing, and automotive radar.