Personal
wet–thermal management, which focuses on adjusting
the moisture and temperature in a “human skin–wearable
fabric–external environment” microclimate system, is
the basis for ensuring the comfort of human beings and has recently
attracted tremendous attention owing to its substantial significant
role not only in ameliorating the health conditions but also in smart
textiles for personal protection, electronic wearable devices, health
monitoring, and so on. However, wearable fabrics focusing on personal
comfort, especially wet–thermal dual-mode management, viz., including both efficient sweat removal and heat retention
performances that provide protection for outdoor sports or work in
a cold environment, still present huge challenges in their design,
fabrication, and practical application. A Janus membrane with asymmetric
wettability (superhydrophobic/hydrophobic–superhydrophilic/hydrophilic)
along the thickness direction shows a unique directional water transport
capacity, acts as a “water transport diode”, and is
expected to be helpful to expel sweat/moisture efficiently from the
human body to the external environment. Herein, we fabricated a hydrophobic/hydrophilic
Janus membrane decorated by MXene (Ti3C2T
x
) multilayered nanoflakes with outstanding photothermal
conversion capacity via facile electrospinning combined with in situ polymerization. By virtue of asymmetric wettability
and directional wicking, water and moisture can be driven from the
hydrophobic layer to the hydrophilic layer, providing the Janus membrane
with excellent directional water and moisture transport capacity.
Furthermore, the successful decoration of MXene multilayered nanoflakes
imparts electrical-power-independent heat retention capacity to the
Janus membrane, resulting from the excellent photothermal conversion
capacity of MXene. This work provides an insight into the facile design
of Janus membranes for wet–thermal management and establishes
a promising strategy not only to maintain personal comfort to ameliorate
the health conditions as well as to improve the work efficiency of
outdoor laborers in a cold environment but also to guarantee the special
functions of smart wearable and multifunctional fabrics.