Veterinary Herbal Medicine (VHM) is a comprehensive, current, and informative discipline on the utilization of herbs in veterinary practice. Driven by chemistry but progressively directed by pharmacology and the clinical sciences, drug research has contributed more to address the needs for innovative veterinary medicine for curing animal diseases. However, research into veterinary medicine of vegetal origin in the pharmaceutical industry has reduced, owing to questions such as the short of compatibility of traditional natural-product extract libraries with high-throughput screening. Here, we present a cross-species chemogenomic screening platform to dissect the genetic basis of multifactorial diseases and to determine the most suitable points of attack for future veterinary medicines, thereby increasing the number of treatment options. First, based on critically examined pharmacology and text mining, we build a cross-species drug-likeness evaluation approach to screen the lead compounds in veterinary medicines. Second, a specific cross-species target prediction model is developed to infer drug-target connections, with the purpose of understanding how drugs work on the specific targets. Third, we focus on exploring the multiple targets interference effects of veterinary medicines by heterogeneous network convergence and modularization analysis. Finally, we manually integrate a disease pathway to test whether the cross-species chemogenomic platform could uncover the active mechanism of veterinary medicine, which is exemplified by a specific network module. We believe the proposed cross-species chemogenomic platform allows for the systematization of current and traditional knowledge of veterinary medicine and, importantly, for the application of this emerging body of knowledge to the development of new drugs for animal diseases.