Three-dimensional (3-D) autostereoscopic display with dedicated multiple spatial information under corresponding illumination is critical, especially for anti-counterfeiting, entertainment, etc. In this paper, we propose a 3-D spatial floating display using multi-wavelength integral photography (IP). Using dedicated inkjet printer and refraction-based IP algorithm, a complex two-dimensional (2-D) elemental image array (EIA) can be printed for both fluorescent and normal 3-D autostereoscopic display. With a micro-convex lens array (MLA) and a medium attached on the EIA, normal 3-D images are reconstructed under visible light, while fluorescent 3-D images can be reconstructed under ultraviolet (UV) light. Moreover, to provide comfortable 3-D images with multiple information in space, a feasible 3-D spatial floating display system is also proposed considering the spatial position of the observer with less UV radiation. The proposed method takes the wavelength of 3-D display into consideration to provide spatial multi-information, and can be applied for media, entertainment, etc. Experimental results verified the availability of the proposed method.