The Computational Fluid Dynamics (CFD)-based thermal-hydraulics and safety analyses of Lead-based Fast Reactor (LFR) have attracted great attentions in recent years. Commercial CFD tools have been widely used in the 3D simulations of pool-type reactors owing to their powerful abilities in geometric modeling and meshing. Compared with the commercial CFD tools, OpenFOAM is a free open-source CFD code, which is more flexible to perform multi-physics coupling activities. In this paper, in order to develop a solver for simulating the coupled flow and heat transfer behaviors of fluid (coolant) and fuel pin in LFR, the fuel pin Heat Conduction (HC) model was coupled to the modified icoFoam solver of OpenFOAM. Verifications were conducted by the steady-state coupled simulation of fluid and fuel pin heat transfer behaviors, comparing with the MPC-LBE code which has been verified by the benchmarks for LFR fuel pin channel. The results simulated by the coupled solver proposed in this paper agreed well with the ones provided by the MPC-LBE code. This study lays a foundation for the further development of transient safety analysis code for LFR in our future work.