AlphaFold has burst into our lives. A powerful algorithm
that underscores
the strength of biological sequence data and artificial intelligence
(AI). AlphaFold has appended projects and research directions. The
database it has been creating promises an untold number of applications
with vast potential impacts that are still difficult to surmise. AI
approaches can revolutionize personalized treatments and usher in
better-informed clinical trials. They promise to make giant leaps
toward reshaping and revamping drug discovery strategies, selecting
and prioritizing combinations of drug targets. Here, we briefly overview
AI in structural biology, including in molecular dynamics simulations
and prediction of microbiota–human protein–protein interactions.
We highlight the advancements accomplished by the deep-learning-powered
AlphaFold in protein structure prediction and their powerful impact
on the life sciences. At the same time, AlphaFold does not resolve
the decades-long protein folding challenge, nor does it identify the
folding pathways. The models that AlphaFold provides do not capture
conformational mechanisms like frustration and allostery, which are
rooted in ensembles, and controlled by their dynamic distributions.
Allostery and signaling are properties of populations. AlphaFold also
does not generate ensembles of intrinsically disordered proteins and
regions, instead describing them by their low structural probabilities.
Since AlphaFold generates single ranked structures, rather than conformational
ensembles, it cannot elucidate the mechanisms of allosteric activating
driver hotspot mutations nor of allosteric drug resistance. However,
by capturing key features, deep learning techniques can use the single
predicted conformation as the basis for generating a diverse ensemble.