3DLigandSite is a web tool for the prediction of ligand-binding sites in proteins. Here, we report a significant update since the first release of 3DLigandSite in 2010. The overall methodology remains the same, with candidate binding sites in proteins inferred using known binding sites in related protein structures as templates. However, the initial structural modelling step now uses the newly available structures from the AlphaFold database or alternatively Phyre2 when AlphaFold structures are not available. Further, a sequence-based search using HHSearch has been introduced to identify template structures with bound ligands that are used to infer the ligand-binding residues in the query protein. Finally, we introduced a machine learning element as the final prediction step, which improves the accuracy of predictions and provides a confidence score for each residue predicted to be part of a binding site. Validation of 3DLigandSite on a set of 6416 binding sites obtained 92% recall at 75% precision for non-metal binding sites and 52% recall at 75% precision for metal binding sites. 3DLigandSite is available at https://www.wass-michaelislab.org/3dligandsite. Users submit either a protein sequence or structure. Results are displayed in multiple formats including an interactive Mol* molecular visualization of the protein and the predicted binding sites.
The COVID-19 pandemic and the associated prevention measures did not only impact on the transmission of COVID-19 but also on the spread of other infectious diseases in an unprecedented natural experiment. Here, we analysed the transmission patterns of 22 different infectious diseases during the COVID-19 pandemic in England. Our results show that the COVID-19 prevention measures generally reduced the spread of pathogens that are transmitted via the air and the faecal-oral route. Moreover, the COVID-19 prevention measures resulted in the sustained suppression of vaccine-preventable infectious diseases also after the removal of restrictions, while non-vaccine preventable diseases displayed a rapid rebound. Despite concerns that a lack of exposure to common pathogens may affect population immunity and result in large outbreaks by various pathogens post-COVID-19, only four of the 22 investigated diseases and disease groups displayed higher post-than pre-pandemic levels without an obvious causative relationship. Notably, this included chickenpox for which an effective vaccine is available but not used in the UK, which provides strong evidence supporting the inclusion of the chickenpox vaccination into the routine vaccination schedule in the UK. In conclusion, our findings provide unique, novel insights into the impact of non-pharmaceutical interventions on the spread of a broad range of infectious diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.