The increasing distribution of high-field (3 T) magnetic resonance (MR) systems for clinical use has been accompanied by the need to fully understand the advantages and disadvantages that the increase in signal quality confers. Continuous development of the coils is required to fully express the potential of these systems, especially given the synergy between parallel imaging and the recent multichannel phased-array coils, which are able to improve image quality, spatial resolution and diagnostic accuracy in musculoskeletal imaging. The increase in signal offered by the high field makes possible improved visualisation of bone, cartilage, tendons and ligaments. This advantage, together with increased spatial resolution, is particularly useful when studying joints or some of their components, the evaluation of which has produced suboptimal results in non arthrographic examinations such as the glenoid labrum of the shoulder and the articular cartilage of the knee. Thanks to the greater signal-to-noise ratio and improved spatial resolution, MR imaging at 3 T is able to notably increase diagnostic performance in the musculoskeletal setting, with a consequent improvement in patient treatment and management.