In this pedagogical review we introduce systematic approaches to deforming integrable 2-dimensional sigma models. We use the integrable principal chiral model and the conformal Wess-Zumino-Witten model as our starting points and explore their Yang-Baxter and current-current deformations. There is an intricate web of relations between these models based on underlying algebraic structures and worldsheet dualities, which is highlighted throughout. We finish with a discussion of the generalisation to other symmetric integrable models, including some original results related to ZT cosets and their deformations, and the application to string theory. This review is based on notes written for lectures delivered at the school "Integrability, Dualities and Deformations," which ran from 23 to 27 August 2021 in Santiago de Compostela and virtually.